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By means of the SU(1, 1) algebra we study the relationships between the
coordinates, energy, angular momentum, spherical harmonics, and radial function
of a hydrogen atom and those of a four-dimensional harmonic oscillator. The

energies and angular momenta of the two quantum systems are found to correspond
to one another.

1. INTRODUCTION

The relationship between a hydrogen atom and a four-dimensional

(4D) harmonic oscillator has been studied by many authors (Ravdal and

Toyoda, 1967; Ikeda and Miyachi, 1970; Bioteux, 1972, 1973a, b; Barut

et al., Chen, 1980a, b, 1981a, b; Iwai, 1982; Kibler and Negadi, 1983a,

b, 1984), but there are still problems in need of further study. For example,

what is the relationship between the angular momenta of the two quantum

systems? The so-called KS transformation (Kibler and Negadi, 1983a,

b, 1984)

z1 5 2(v1v4 1 v2v3), z2 5 2(v2v4 2 v1v3), z3 5 v 2
1 1 v 2

2 2 v 2
3 2 v 2

4 (1)

where zi (i 5 1, 2, 3) and v a ( a 5 1, 2, 3, 4) are the coordinates of the
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hydrogen atom and the 4D harmonic oscillator, respectively, has been used

to transform the energy eigenvalue equation of the hydrogen atom

1 2 " 2

2 m
D z 2

Ze2

z 2 c 5 E c (2)

into that of the 4D harmonic oscillator

1 2 " 2

2 m
D v 2 4Ev2 2 c 5 4Ze2 c (3)

accompanied by the constraint

1 v1
-

- v2

2 v2
-
v1

2 v3
-

- v4

1 v4
-

- v3 2 c 5 0 (4)

where z 5 (zi zi)
1/2, v 2 5 v a v a , D z 5 - 2/ - zi - zi , and D v 5 - 2/ - v a - v a . In

this transformation, the same function c is used to represent the energy

eigenfunctions of both quantum systems, and the energies of the two quantum

systems do not correspond to one another. It is not clear whether the different
energy eigenstates of the hydrogen atom can be transformed into the different

energy eigenstates of the 4D harmonic oscillator.

In this paper, we, too, study the relationship between the hydrogen atom

and the 4D harmonic oscillator, but with a method that is different from the

one used by other authors. Zeng et al. (1994a, b) used the SU(1, 1) algebra

to give a simple and general algebraic relationship between a d-dimensional
hydrogen atom and a D-dimensional harmonic oscillator in which the energies

of the two quantum systems correspond. In Zeng et al. (1997) those authors

further developed their method and proved strictly that the coordinate transfor-

mation between the d-dimensional hydrogen atom and the D-dimensional

harmonic oscillator forms a Clifford algebra of traceless. Here use the method

of Zeng et al. (1994a, b) to study the relation between the hydrogen atom
and the 4D harmonic oscillator. The method is very simple and effective,

can help solve the problems about the relationship between the hydrogen

atom and the 4D harmonic oscillator.

We first point out that in studying the relationship between the hydrogen

atom and the 4D harmonic oscillator, it is convenient to use dimensionless

variables, which are chosen to be xi 5 zi/a0 (i 5 1, 2, 3) for the hydrogen
atom and v a 5 v a /v0 ( a 5 1, 2, 3, 4) for the 4D harmonic oscillator, where

zi and v a are the coordinates in the usual spaces of the hydrogen atom and

the 4D harmonic oscillator, respectively, a0 5 " 2/( m e 2) is the first Bohr orbit

radius of the hydrogen atom, and v0 5 ! " / m v .
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Our method is as follows.

First, we consider the space {xj j 5 1, 2, 3,}, which is the coordinate

space of the hydrogen atom. In it, we construct the set of operators

K1 5
1

2
(x D x 1 x), K2 5 i 1 1 1 xj

-
- xj 2 , K3 5 2

1

2
(x D x 2 x) (5)

where x 5 (xjxj)
1/2 and D x 5 - 2/- xj - xj. These operators constitute the SU (1, 1)

algebra, because they satisfy the commutation relations

[K1, K2] 5 2 iK3, [K2, K3] 5 iK1, [K3, K1] 5 iK2 (6)

Next, we consider the space {u a , a 5 1, 2, 3, 4}, which is the coordinate

space of the 4D harmonic oscillator. In it, we construct the set of operators

also denoted by K1, K2, and K3

K1 5
1

4
(u 2 1 D u), K2 5 i 1 1 1

1

2
u a

-
- u a 2 , K3 5

1

4
(u 2 2 D u) (7)

where u 5 (u a u a )1/2 and D u 5 - 2/ - u a - u a . It is easy to show that these operators

also satisfy the communication relations (6); then they also constitute the

SU(1, 1) algebra.
The two sets of the operators (5) and (7) satisfy the SU(1, 1) algebraic

relations. Thus, the SU(1, 1) algebra builds a bridge between the hydrogen

atom and the 4D harmonic oscillator by which all the problems (coordinates,

energy, angular momentum, spherical harmonics, radial function, etc.) of the

hydrogen atom may be transformed into the corresponding problems of the

4D harmonic oscillator.
The contents of this paper are as follows: In Section 2 we determine

the relationship between the coordinates of the hydrogen atom and the 4D

harmonic oscillator. This relationship is similar to the so-called KS transforma-

tion, but is not exactly the same. In Section 3 the coordinate transformation

obtained in Section 2 is used to study the relationship between the angular

momenta of the hydrogen atom and the 4D harmonic oscillator, and the
relationship between a three-dimensional spherical harmonics and a four-

dimensional spherical harmonics. In Section 4 we study the relationships

between the energy and the energy eigenstate of the hydrogen atom and those

of the 4D harmonic oscillator. The result we obtain is that the different

energies and energy eigenstates of the hydrogen atom correspond to the

different energies and energy eigenstates of the 4D harmonic oscillator.
Finally, in Section 5 we use the results in Sections 3 and 4 to determine the

relationship between the radical functions of the hydrogen atom and the 4D

harmonic oscillator. The result shows that the two radical functions in fact

can be connected by a simple transformation.
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2. TRANSFORMATION BETWEEN COORDINATES

Now we determine the transformation between the coordinates of the
hydrogen atom and the 4D harmonic oscillator. We have shown that both

operators (5) (which are defined by the coordinates of the hydrogen atom)

and operators (7) (which are defined by the coordinates of the 4D harmonic

oscillator) constitute the SU(1,1) algebra. Thus, identifying the operators (5)

with the operators (7), we have the following operator equations:

x D x 1 x 5
1

2
( D u 1 u 2) (8)

xj
-

- xj

5
1

2
u a

-
- u a

(9)

x D x 2 x 5
1

2
( D u 2 u 2) (10)

It is clear that (8) and (10) may be rewritten as

x 5
1

2
u 2 (11)

x D x 5
1

2
D u (12)

Using the operator equations (8)±(12), one can determine the transforma-

tion between the coordinates of the hydrogen atom and the 4D harmonic

oscillator. In fact, one can know that xj are certainly homogeneous functions

of u a with degree two in accordance with equation (11), while the specific
forms of the functions may be determined with the help of the other operator

equations. Of course, the forms of the functions are not unique.

We give the following form for the coordinate transformation between

the hydrogen atom and the 4D harmonic oscillator:

x1 5 u1u4 1 u2u3, x2 5 u2u4 2 u1u3, x3 5
1

2
(u 2

1 1 u 2
2 2 u 2

3 2 u 2
4) (13)

It is not difficult to check the correctness of the transformation (13). The

method is to substitute (13) into (11) or act with the operator equations

(8)±(12) on (13).
The transformation (13) differs in form from the so-called KS transforma-

tion by only the constant 2, but this difference is very interesting. From the

transformation (13), one can determine all the relationships between the

hydrogen atom and the 4D harmonic oscillator.
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It is important to note that, given the transformation (13), one can derive

the operator equations in the opposite direction. In fact, the operator equation

(9) can be derived from the transformation (13), but the operator equation
(12) in this case should be replaced by

x D x 5
1

2
D u 2

1

2
u 2 2P 2 (14)

where

P 5 u1
-

- u2

2 u2
-

- u1

2 u3
-

- u4

1 u4
-

- u3

(15)

It seems that equation (14) is not similar to equation (12) in form. But noting

Pxj 5 0 ( j 5 1, 2, 3) (16)

one easily sees that equation (14) is consistent with equation (12). Because

P is a differential operator, (16) may be generalized to an arbitrary function

C (x) of xi , i.e., one has

P C (x) 5 0 (17)

provided the variables xi in C (x) can be expressed in terms of u a in the form

(13), or C (x) can be expressed as a function C 8(u) of u a by the help of the

transformation (13), so one has C 8(u) 5 C (x). In considering the action of

the operator P on this function relation, one may set P 5 0.

We shall study the relationship between the angular momenta of the
hydrogen atom and the 4D harmonic oscillator. To this end, now we use

spherical coordinates to describe the transformation between the coordinates

of the two quantum systems.

The spherical coordinates (x, u , f ) of the hydrogen atom are defined by

x1 5 x sin u sin f , x2 5 x sin u cos f , x3 5 cos u (18)

where 0 # u # p and 0 # f # 2 p . The spherical coordinates (u, u 2, u 1,

u 0) of the 4D harmonic oscillator are defined by

u1 5 u sin u 2 sin u 1 sin u 0, u2 5 u sin u 2 sin u 1 cos u 0

u3 5 usin u 2 cos u 1 u4 5 u cos u 2 (19)

where 0 # u 2 # p , 0 # u 1 # p , and 0 # u 0 # 2 p . Substituting equations

(18) and (19) into equations (13), we find again that the equation (11)
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holds, and obtain the relations between the angular coordinates of the two

quantum systems,

x 5
1

2
u 2, cos

u
2

5 sin u 2 sin u 1, f 5 u 0 1 c (20)

where tan c 5 tan u 2 cos u 1. The transformation (20) is very simple and

useful; we shall use it to obtain the relation between the three-dimensional

and four-dimensional spherical harmonics.

3. TRANSFORMATION BETWEEN ANGULAR MOMENTA

In order to study the connection between the angular momenta of the

hydrogen atom and the 4D harmonic oscillator, we first describe separately

the angular momenta of the two quantum systems.
The angular momentum operators of the hydrogen atom are defined by

Ljk 5 2 i 1 xj
-

- xk

2 xk
-

- xj 2 (21)

Its square is L 2 5 ( i , j Lij Lij. If one sets L1 5 L23, L2 5 L31, and L3 5 L12,
then one has

[L1, L2] 5 iL3, [L2, L3] 5 iL1, [L3, L1] 5 iL2 (22)

which means that the Li construct the SO(3) algebra.

One usually chooses L 2 and L3 as a complete set of operators. Their

common eigenfunctions are the spherical harmonics Ylm( u , f ) in the three-

dimensional space,

L 2Ylm( u , f ) 5 l (l 1 1)Ylm( u , f ), L3Ylm( u , f ) 5 mY lm( u , f ) (23)

where l 5 0, 1, 2, . . . ; m, 5 l, l 2 1, . . . , 2 l. The spherical coordinates

[x 5 (xi xi)
1/2, u , f ] we use here are defined by (18), and are not the same

as those used in quantum mechanics (Messiah, 1972).3

The angular momentum operators of the 4D harmonic oscillator are

defined by

L 8a b 5 2 i 1 u a
-

- u b
2 u b

-
- u a 2 (24)

3 Note that the angle f in Ylm( u , f ) is different from the angle w in Ylm( u , w ) used in quantum
mechanics; one has the relation w 5 p /2 2 f between them.
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Its square is L 82 5 ( a , b L 8a b L 8a b . The L 8a b satisfy

[L 8g s , L 8a b ] 5 i d a g L 8b s 2 i d a s L 8b g 2 i d b g L 8a s 1 i d b s L 8a g (25)

which means that the L 8a b construct the SO(4) algebra. In (25), if one sets

a 5 s , then one gets

[L 8a b , L 8g a ] 5 iL8b g (26)

One may set A1 5 L 823, A2 5 L 831, and A3 5 L 812. Clearly the Ai construct

the SO(3) algebra, a subalgebra in the SO(4) algebra constructed by L 8a b ,

since they satisfy

[A1, A2] 5 iA3, [A2, A3] 5 iA1, [A3, A1] 5 iA2 (27)

For the SO(4) algebra constructed by L 8a b , one usually chooses L82, A 2, and

A3 as a complete set of operators; their common eigenfunctions, the spherical

harmonics in the 4D space, are well known (Qian and Zeng, 1993). But we
do not make this choice in this paper.

We set

B1 5
1

2
(L 823 1 L 814), B2 5

1

2
(L 831 1 L 824), B3 5

1

2
(L 812 1 L 834)

(28)

It is easy to show that Bi also construct the SO(3) algebra, i.e., satisfy

[B1, B2] 5 iB3, [B2, B3] 5 iB1, [B3, B1] 5 iB2 (29)

Its square is

B 2 5
1

4
L 82 1

1

2
P1 (30)

where P1 5 L 812L 834 1 L 823L 814 1 L 831L 824.
For the SO(4) algebra constructed by L 8a b , we choose L82, B 2, and B3

as a complete set of operators. Their common eigenfunctions, the spherical

harmonics in the 4D space, are denoted by Yl82, l81, m8( u 2, u 1, u 0) that is, we have

L82Yl82, l81,m8( u 2, u 1, u 0) 5 l 82(l 82 1 2)Yl82, l81,m8( u 2, u 1, u 0)

B 2Yl82, l81,m8( u 2, u 1, u 0) 5 l 81(l 81 1 1)Yl82, l81,m8( u 2, u 1, u 0) (31)

B3Yl82, l81, m8( u 2, u 1, u 0) 5 m8Yl82, l81, m8( u 2, u 1, u 0)

where l 82, l 81 5 0, 1, 2, . . . 0 # l 81 # l 82, m8 5 l 81, l 81 2 1, . . . , 2 l 81. The

Yl82, l81, m8( u 2, u 1, u 0) are different from those defined in Qian and Zeng (1993),



2470 Zeng, Ao, Wu, and Su

but may be obtained through the transformation of the latter. The spherical

coordinates [u 5 (u a u a )1/2, u 2, u 1, u 0] used here are defined by (19).

Now we determine the relations between the angular momentum opera-
tors of the hydrogen atom and the 4D harmonic oscillator.

From the transformation (13), we obtain the differential operator relations

-
- x1

5 u 2 2 1 u4
-

- u1

1 u3
-

- u2

1 u2
-

- u3

1 u1
-

- u4 2
-

- x2

5 u 2 2 1 2 u3
-

- u1

1 u4
-

- u2

2 u1
-

- u3

1 u2
-

- u4 2 (32)

-
- x3

5 u 2 2 1 u1
-

- u1

1 u2
-

- u2

2 u3
-

- u3

2 u4
-

- u4 2
Using the relations (13) and (32), we can express Ljk in terms of L 8a b as follows:

L12 5 2 L21 5 u 2 2{(u 2
1 1 u 2

2) L 834 1 (u 2
3 1 u 2

4)L 812} (33)

L13 5 2 L31

5 2
1

2
u 2 2{(u 2

1 1 u 2
4)L 814 1 (u 2

2 1 u 2
3)L 823

1 (u2u4 2 u1u3)( 2 L 812 1 L 834) 1 (u1u2 1 u3u4)(L 824 1 L 813)}(34)

L23 5 2 L32 5 2
1

2
u 2 2{(u 2

2 1 u 2
4)L 824 2 (u 2

1 1 u 2
3)L 813

2 (u1u2 2 u3u4)(L 823 2 L 814) 2 (u2u3 1 u1u4)( 2 L 812 1 L 834)}(35)

Introducing the relations (33)±(35) into L 2 and making some complicated

operations, we obtain the connection between the operators L 2 and L82 as

L 2 5
1

4
(L 82 2 P 2

2) (36)

where P2 5 2 L 812 1 L 834. Relations (33)±(36) are just the transformations

between the angular momentum operators of the hydrogen atom and the 4D

harmonic oscillator.

One feature of the transformation (13) which is very important in
determining the connection between the angular momenta of the hydrogen

atom and the 4D harmonic oscillator is that the actions of the operator P2

on xi give the result 0:

P2xi 5 0 (37)
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P2 is a differential operator; therefore, the result (37) may be generalized to

an arbitrary function Y (x), provided the variables xi in Y (x) can be expressed

in terms of u a in the form (13), i.e., one has P2Y (x) 5 0.
We now assume that there are two functions Y (x) and Y 8(u), which may

be considered as the state functions of the hydrogen atom and the 4D harmonic

oscillator, respectively. We assume also that Y 8(u) comes from the transforma-

tion of Y (x) via the coordinate transformation (13), and thus one has

Y 8(u) 5 Y (x). It is clear that the action of the operator P2 on Y 8(u) also

gives the result 0: P2Y 8(u) 5 0. The physical meaning of this result is that
the state function of the 4D harmonic oscillator connected with the hydrogen

atom is such a function, in which the components L812 and L834 of the angular

momentum operator of the 4D harmonic oscillator are the same.

Our operator equations always act on the function relation Y 8(u) 5
Y (x). The discussion above shows that in the operator equations (33)±(36),

we can always set P2 5 0 or L 812 5 L 834. In other words, the operator equations
(33)±(36) can be written simply as

L12 5 L 812 (38)

L13 5 2
1

2
u 2 2{(u 2

1 1 u 2
4)L814 1 (u 2

2 1 u 2
3)L823

1 (u1u2 1 u3u4)(L824 1 L813)} (39)

L23 5 2
1

2
u 2 2{(u 2

2 1 u 2
4)L824 2 (u 2

1 1 u 2
3)L813

2 (u1u2 2 u3u4)(L823 2 L814)} (40)

L 2 5
1

4
L82 (41)

Now we consider the operator B 2 defined in (30). It is easy to show

that the action of the operator P1 on xi also gives the result 0: P1xi 5 0. Thus,

in considering the action of B 2 on Y 8(u) 5 Y (x), one may set also P1 5 0,

so one has B 2 5 1±4L82. Comparing this relation with (41), one finds

L 2 5 B 2 (42)

According to (41) and (42) and noting that B3 5 L 812 5 L 834, if Y (x) is
the common eigenfunction of L 2 and L3 with the eigenvalues l (l 1 1) and

m, respectively, i.e., it satisfies

L 2Y (x) 5 l (l 1 1)Y (x), L3Y (x) 5 mY(x) (43)



2472 Zeng, Ao, Wu, and Su

then Y 8(u) is certainly the common eigenfunction of L82, B 2, and B3, with

the eigenvalues l 82(l 82 1 2), l 81(l 81 1 1), and m8, respectively, i.e., it satisfies

L 82Y 8(u) 5 l 82(l 82 1 2)Y 8(u)

B 2Y 8(u) 5 l 81(l 81 1 1)Y 8(u) (44)

B3Y 8(u) 5 m8Y 8(u)

Moreover, one easily shows that

l 82 5 2l 81, l 81 5 l, m8 5 m (45)

which represents the relationship between the angular momenta of the hydro-

gen atom and the 4D harmonic oscillator.

Let us express the results above in spherical coordinates. In this case,
the coordinate transformation becomes (20). The transformation relationship

between the angular momentum operators of the hydrogen atom and the 4D

harmonic oscillator may be rewritten in spherical coordinates, but the relations

L82 5 4L 2, B 2 5 L 2, and B3 ( 5 L 812 or L 834) 5 L3 naturally are unchanged.

In spherical coordinates, the common eigenfunction of L 2 and L3 is the
three-dimensional spherical harmonic Ylm( u , f ), which is a function of the

angles u and f and is labeled by two quantum numbers l and m, in other

words, Ylm( u , f ) satisfies (23). If we transform the angles u and f in Ylm( u ,

f ) into the angles u 2, u 1, and u 0 in accordance with (20), then Ylm ( u , f )

changes to the 4D spherical harmonics Y 82l,l,m( u 2, u 1, u 0), which is a function

of the angles u 2, u 1, and u 0; in labeling it, we here have used the quantum
numbers 2l, l, and m. Then one has

Y 82l, l, m( u 2, u 1, u 0) 5 Ylm( u , f ) (46)

According to the description above, Y 82l, l, m( u 2, u 1, u 0) is certainly the common

eigenfunction of L82, B 2, and B3; the corresponding eigenvalues are 2l (2l 1
2), l (l 1 1), and m, respectively; in other words, it satisfies

L 82Y 82l, l, m( u 2, u 1, u 0) 5 2l (2l 1 2)Y 82l, l, m( u 2, u 1, u 0)

B 2Y 82l, l, m( u 2, u 1, u 0) 5 l (l 1 1)Y 82l, l, m( u 2, u 1, u 0) (47)

B3Y 82l, l, m( u 2, u 1, u 0) 5 mY82l, l, m( u 2, u 1, u 0)

However, because Y 82l, l, m( u 2, u 1, u 0) and Ylm( u , f ) are spherical harmonics in

two different spaces, Y 82l, l, m ( u 2, u 1, u 0) is not normalized if Ylm( u , f ) is

already normalized.
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The spherical function Yl82, l81, m8( u 2, u 1, u 0) has been defined as the com-

mon eigenfunction of L82, B 2, and B3 [see (31)]. It clearly may be used to

express the angular momentum state of the 4D harmonic oscillator connected
to the hydrogen atom, provided we set l 82 5 2l, l 81 5 l, and m8 5 m, and can

be obtained by setting

Y2l, l, m( u 2, u 1, u 0) 5 N1Y 82l, l, m( u 2, u 1, u 0) (48)

where N1 is a normalization constant. Thus, we finally have

Y2l, l, m( u 2, u 1, u 0) 5 N1Ylm( u , f ) (49)

This is just the relationship between the spherical harmonics of the 4D

harmonic oscillator and the hydrogen atom.

Y2l, l, m( u 2, u 1, u 0) includes only two quantum numbers l and m. In other

words, the spherical harmonics of the 4D harmonic oscillator connected by
the hydrogen atom may be labeled by using only two quantum numbers. The

reason for this situation is that our 4D harmonic oscillator comes from the

transformation of the hydrogen atom; thus the components L 834 and L 812 of

its angular momentum operator are the same.

We give an example. The spherical harmonics of the hydrogen atom in

the case l 5 1 are (Messiah, 1972)

Y11( u , f ) 5 ! 3

8 p
sin u e i( p /2 2 f )

Y10( u , f ) 5 ! 3

4 p
cos u

Y1 2 1( u , f ) 5 ! 3

8 p
sin u e 2 i ( p /2 2 f )

which are normalized. Using the angle transformation (20) and multiplying

by N1 5 ! 2/ p , they are changed into the spherical harmonics of the 4D

harmonic oscillator

Y211( u 2, u 1, u 0) 5
! 3

p
(1 2 sin2 u 2 sin2 u 1)

1/2 sin u 2 sin u 1 e i( p /2 2 u 0 2 c )

Y210( u 2, u 1, u 0) 5 ! 3

2

1

p
(2 sin2 u 2 sin2 u 1 2 1) (51)

Y21 2 1( u 2, u 1, u 0) 5
! 3

p
(1 2 sin2 u 2 sin2 u 1)

1/2 sin u 2 sin u 1 e 2 i( p /2 2 u 0 2 c )
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It is easy to check that Y21m( u 2, u 1, u 0) satisfy the relations

L 82Y21m( u 2, u 1, u 0) 5 8Y21m( u 2, u 1, u 0)

B 2Y21m( u 2, u 1, u 0) 5 2Y21m( u 2, u 1, u 0) (52)

B3Y21m( u 2, u 1, u 0) 5 mY21m( u 2, u 1, u 0)

and are normalized, which shows the correctness of the result (49). In order

to check (52), one needs to use the following expressions for L82 and
B3 ( 5 L 812 or L 834):

L 82 5 2 H 1

sin2 u 2

-
- u 2 1 sin2 u 2

-
- u 2 2 1

1

sin2 u 2 sin u 1

-
- u 1 1 sin u 1

-
- u 1 2

1
1

sin2 u 2 sin2 u 1

- 2

- f 2 J (53)

L 812 5 i
-

- u 0

, L 834 5 2 i H 2 cos u 1
-

- u 2

1 cot u 2 sin u 1
-

- u 1 J (54)

4. TRANSFORMATION BETWEEN ENERGIES

Now we derive the relationship between the energies of the hydrogen

atom and the 4D harmonic oscillator. We still use dimensionless variables.

The Hamiltonian of the hydrogen atom is H 5 2 1±2 D x 2 1/x. Using
(5), we can reduce this expression to

(K1 1 K3)H 5 2
1

2
(K1 2 K3) 2 1 (55)

Writing the eigenequation of H

H C n(x) 5 en C n(x) (56)

where C n(x)(n 5 1, 2, . . .) is the eigenfunction, en is the corresponding
eigenvalue, and

en 5 2
1

2n 2 1 in units
m e 4

" 2 2 (57)

then from equation (55) we obtain

H 2 F 1

2
1 en G K1 1 F 1

2
2 en G K3 2 1 J C n(x) 5 0 (58)
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Defining the function u n by

cosh u n 5
1 2 2en

! 2 8en

, sinh u n 5 2
1 1 2en

! 2 8en

(59)

and using the following relation satisfied by the elements of the SU(1, 1)

algebra,

e 2 iK2 u nK3e
iK2 u n 5 K3 cosh u n 1 K1 sinh u n (60)

we can rewrite equation (58) as

H e 2 iK2 u nK3e
iK2 u n 2

1

! 2 2en
J C n (x) 5 0 (61)

or

H K3 2
1

! 2 2en
J e iK2 u n C n(x) 5 0 (62)

Equation (62) is an eigenequation of the operator K3. Thus, we have trans-

formed the eigenequation of H into the eigenequation of the operator K3.

The Hamiltonian of the 4D harmonic oscillator is H 8 5 2 1±2 D u 1 1±2 u 2.
Its eigenequation can be written as

H 8 F n8(u) 5 En8 F n8(u) (63)

where F n8(u)(n8 5 0, 1, . . .) is the eigenfunction, En8 is corresponding eigenvalue, and

En8 5 (n8 1 2)(in units " v ) (64)

Comparing H 8 with K3 expressed in (7), one sees that K3 5 1±2 H 8; thus the

eigenequation (63) can be rewritten as

K3 F n8(u) 5
En8

2
F n8(u) (65)

Equation (65) is also an eigenequation of the operator K3. Therefore,

comparing equation (62) with equation (65), one finds the following mapping:

En8 5 ! 2
2

en

(66)

F n8(u) 5 Ne iK2 u n C n(x) (67)

This establishes the relationship between the energy and energy eigenfunction

of the hydrogen atom and those of the 4D harmonic oscillator. N in (67) is



2476 Zeng, Ao, Wu, and Su

a normalization constant, due to the fact that C n(x) and F n8(u) are normalized

in different spaces.

The relation (66) shows that the energy levels of the hydrogen atom and
the 4D harmonic oscillator correspond one by one to each other. Substituting

equations (57) and (64) into equation (66), we find further

n8 5 2(n 2 1) (68)

which shows that the energy levels of the 4D harmonic oscillator connected

to the hydrogen atom are always even, and the ground state (n 5 1) of the
hydrogen atom is always mapped into that (n8 5 0) of the 4D harmonic

oscillator.

5. TRANSFORMATION BETWEEN RADICAL FUNCTIONS

Now we express equation (67) using spherical coordinates. In spherical

coordinates, the energy eigenfunction C n(x) of the hydrogen atom can be

written as

C n(x) 5 Rnl(x)Ylm( u , f ) (69)

where Rnl(x) is the radical function of the hydrogen atom; n 5 1, 2, . . . ;
l 5 0, 1, . . . , n 2 1, and m 5 l, l 2 1, . . . , 2 l. The energy eigenfunction

F n8(u) of the 4D harmonic oscillator can be written as

F n8(u) 5 Tn8l82(u) Yl82, l81, m8( u 2, u 1, u 0) (70)

where Tn8l82(u) is the radical function of the 4D harmonic oscillator, n8 5
0, 1, 2, . . . ; l 82 5 n8, n8 2 2, . . . , 0 or 1, depending on whether n8 is even

or odd; 0 # l 81 # l 82, and m8 5 l 81, l 81 2 1, . . . , 2 l 81. According to the

description in Sections 3 and 4 for the 4D harmonic oscillator connected to

the hydrogen atom, one should set n8 5 2(n 2 1), l 82 5 2l, l 81 5 l, and

m8 5 m.
Substituting equations (69) and (70) into equation (67) and noting the

relation (49) between the three-dimensional and four-dimensional spherical

harmonics, one gets

Tn8l82(u) 5 N2e
iK2 u nRnl(x) (71)

where N2 5 N /N1 is a normalization constant. Equation (71) is just the

relationship between the radical functions of the two quantum systems. It

shows that using only exp(iK2 u n), a simple transformation, the radical function

of the 4D harmonic oscillator can be obtained from that of the hydrogen atom.
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The K2 in (71) is reduced easily to the form

K2 5 i 1 1 1 x
d

dx 2 5 i 1 1 1
1

2
u

d

du 2
Clearly K2 does not include angular coordinates, and therefore commutes

with Li and L 8a :

[K2, Li] 5 [K2, L 8a ] 5 0 (72)

We noted this fact in deriving relation (71).

The radical function Rnl(x) of the hydrogen atom can be expressed as
(Qian and Zeng, 1993; Nieto, 1979)

Rnl(x) 5 Cnle
2 r /2 r lL (2l 1 1)

n 2 l 2 1( r ) (73)

Cnl 5 2a 2 3/2
0 n 2 2[ G (n 2 l)]1/2[ G (n 1 l 1 1)] 2 1/2 (74)

where r 5 (2/n) x, and L k
n( r ) is the general Laguerre polynomial. The radical

function Tn8l82 (u) of the 4D harmonic oscillator can be expressed as (Kostel-

ecky et al., 1985; Louck and Schaffer, 1960; Louck, 1960a, b)

Tn8l82(u) 5 Cn8l82 e 2 u2/2u l82 L (l82 1 1)
n8/2 2 l82 /2(u

2) (75)

Cn8l82 5 v 2 2
0 F 2 G 1 n8

2
2

l 82

2
1 1 2 G

1/2

F G 1 n8

2
1

l 82

2
1 2 2 G

2 1/2

(76)

Using equations (73)±(76) and noting x 5 1±2 u 2, n8 5 2(n 2 1), and l 82 5 2l,
one can check the correctness of equation (71) and determine the normaliza-

tion constant N2:

N2 5 1 a0

2 2
3/2

v 2 2
0 n (77)

In checking the relation (71), one needs to expand the exponential functions

on the right-hand side of (71) as series and use

e 2 iK2 u n 5 e u n e 1/2 u nud/du, e u n 5
1

n
(78)

L ( a )
n (z) 5 o

n

k 5 0

( 2 1)k 1 n 1 a
n 2 k 2 z k

k!
(79)

In this way, the right side of (71) changes to the same form as the left side

of (71). All the calculations in fact are simpler.
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Now we give an example. For the ground state (n 5 1, l 5 0) of the

hydrogen atom, its radical function is

R10(x) 5 2a 2 3/2
0 e 2 x (80)

Acting with the operator e iK2 u 1 on R10(x), noting e u 1 5 1, so u 1 5 0 and

x 5 1±2 u 2, and multiplying it by the normalization constant N2 5
(a0/2)3/2v 2 2

0 , one obtains the radical function for the ground state of the 4D

harmonic oscillator,

T00(u) 5 21/2v 2 2
0 e 2 u2/2 (81)

which is the same as the one obtained from equation (75).

6. CONCLUSION

We have discussed the isomorphism between the hydrogen atom and

the 4D harmonic oscillator. Setting C n(x) 5 C nlm(x) and F n8(u) 5
F n8l82l81m8(u), we can sum up our results as

F n8l82l81m8(u) 5 NeiK2 u n C nlm(x) (82)

where N 5 N1N2, n8 5 2(n 2 1), l 82 5 2l, l 81 5 l, m8 5 m. The results are

not only very simple, but also have important applications.

In Zeng et al. (1997) we used the isomorphism between a two-

dimensional hydrogen atom and a two-dimensional harmonic oscillator to
give a q-analogue for the two-dimensional hydrogen atom. In the same way,

we can use the isomorphism between a three-dimensional hydrogen atom

and a four-dimensional harmonic oscillator to give a q-analogue for the three-

dimensional hydrogen atom.
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